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It is shown that a random superposition of inertial waves in a rotating conducting 
fluid can act as a dynamo, i.e. can systematically transfer energy to a magnetic 
field which has no source other than electric currents within the fluid. Dynamo 
action occurs provided the statistical properties of the velocity field lack re- 
flexional symmetry, and this occurs when conditions are such that there is a net 
energy flux (positive or negative) in the direction of the rotation vector S2. 

If the magnetic field grows from an infinitesimal level, then the mode of maxi- 
mum growth rate dominates before the back-reaction associated with the Lorentz 
force becomes significant. This mode is first determined, and then the back- 
reaction associated with it alone is analysed. It is shown that the magnetic energy 
grows exponentially during the stage when the Lorentz forces are negligible, then 
reaches a maximum depending on the values of the parameters 

R, = u,l/h, Q = Q12/h, 

(uo = initial r.m.s. velocity, I = length scale characteristic of the velocity field, 
h = magnetic diffusivity) and ultimately decays as t-l (equation (5.15)). This 
decay is coupled with a decay of the velocity field due to ohmic dissipation, and 
it occurs because there is no external source of energy for the fluid motion. 

1. Introduction 
In a previous paper (Moffatt 1970, hereafter referred to as I), the effect of 

turbulence on a weak magnetic field in an electrically conducting fluid wits con- 
sidered; and it was shown that when the magnetic Reynolds number R, = u,l/h 
is small (u, = r.m.s.velocity, 1 = lengthscaleof energy containingeddies,h = mag- 
netic diffusivity ), exponentially growing magnetic modes are possible, provided 
the statistical properties of the turbulence lack reflexional symmetry. The grow- 
ing magnetic field has no source other than electric currents flowing within the 
fluid itself. It has a length scale L large compared with 1 (L = 0(Rg2) I) and a 
time scale t ,  (doubling time) large compared with the time scale t, = Z/u, charac- 
teristic of the turbulence (tl = O(Rh3) t,). The exponential growth continues only 
for so long as the back-reaction of the Lorentz force on the fluid can be neglected; 
this (dynamic) aspect of the problem was not investigated in I .  

In  the present paper the investigation is extended and specialized to a situa- 
tion that may be of particular relevance and importance in geophysical and 
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astrophysical contexts. We suppose that the ‘turbulent’ velocity field U(X, t )  
consists of a random superposition of inertial waves in a fluid rotating with uni- 
form angular velocity S2. It will be supposed that the Rossby number is small, i.e. 

(1.1) 

so that inertial interactions between waves of different wave-numbers may be 
neglected. Further, viscosity will be neglected, on the grounds that viscous dis- 
sipation is likely to be dominated by ohmic dissipation in situations of practical 
interest. It will first be shown that such a motion is capable of amplifying a 
magnetic field B(x, t )  on scales L, T large compares with 1 and t, through much the 
same mechanism as described in I. The nature of the amplification processes is 
largely governed by the values of the parameter Q = U 2 / h  = R,R;l. If 

R, = u,/QZ < 1, 

Q <  1, 

(sothat,by(l . l)  R, < 1 

also), then the process is identical with that of I; but if 

Q 9  1, (1.4) 

(the value of R ,  being unrestricted) there are some important differences; e.g. 
the growth of the magnetic field shows strong directional preferences, even if the 
amplitudes of the inertial waves are isotropically distributed. 

As the field grows in strength, it begins to react back upon the constituent 
inertial waves of the velocity field in a manner that can be explicitly taken into 
account. The most significant effect is that each inertial wave, tlirough its 
coupling with the magnetic field (which may be regarded as uniform and steady 
over scales characteristic of the velocity field), loses energy to the ohmic sink. 
In  the absence of any body force distribution, the velocity field therefore decays 
as the magnetic field grows. Ultimately the magnetic field must likewise decay 
to zero. We are primarily interested in the maximum level attained by the field 
before this ultimate decay sets in. I n  the absence of any input of energy, the mag- 
netic field clearly cannot acquire more energy than is released from the velocity 
field; for a random magnetic field, this implies 

(,up)-l(B2) < u t -2 ,  (1.5) 

where u, is now the ‘initial’ ( t  +- 00) r.m.s. velocity, ,u and p are respectively 
the magnetic permeability and the density of the fluid, and the angular brackets 
(. . .> are used to mean an average over scales large compared with L. Actually, 
it will turn out that in none of the circumstances considered can the magnetic 
field acquire more than a small fraction of the initial kinetic energy associated 
with the wave motion. 

As in I, it will be convenient to write 

B(x, t )  = Bo(x, t )  + b(x, t ) ,  (1.6) 

where B, = B varies only on scales L, T, and b is the small fluctuation field in- 
duced by the motion u across B,; it will emerge in $ 2  that the condition (1.1) 
ensures that 

Ibl @ IBol. (1.7) 
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It will further be convenient to use the equivalent Alfv6n velocities 

ho = (~.p)-iBo, h = (pp)-*b, (1.8) 

as a measure of the magnetic field. As in I, the large scale field h, evolves accord- 
ing to the equation 

ah0 
at 
- = V A u A h+hV2h,, 

and the main objective is to find an expression for u A h in terms of the initial 
properties of the velocity field, and of h, and t; and then to solve (1.9). To find 
u A h we need to investigate some of the detailed properties of inertial waves in an 
(apparently) uniform steady magnetic field h,, and this is done in the following 
section. 

The possibility of dynamo action due to a mechanism of the type analysed in 
this paper was first explored by Steenbeck, Krause & Radler (1966). The idea 
was further developed in a series of papers by the same authors, full references to 
which are given in I .  In  none of these papers however was the back-reaction of 
the growing magnetic field taken into account; and an understanding of this 
process is the chief objective of the present investigation. 

~ 

2. Inertial waves in the presence of a uniform steady magnetic field 

field ha are (Lehnert 1954; Chandrasekhar 1961, $50) 
The linearized equations governing inertial waves modified by a magnetic 

aU/at+28AU = -VX+ho.Vh, 
ah/at = ha. VU + hV2h, 

V . U  = V.h = 0. 

The linearization is valid provided IuI @ QZ and Ihl < lhol. ~ ( x ,  t )  is a reduced . .  
pressure distribution, modified by the centrifugal force, and the irrotational part 

(2.4) 
Of the Lorentz force: x = ,p/p + (2p)-1 B2 - (8 A x)2. 

Equations (2.1)-(2.3) admit plane wave solutions of the form 

where 
(u, h, x) = (a, i, 2) exp {i(k. x - wt)}, 

- i w i i + 2 S 2 ~ f i  = - ik2+i (ho .k) i ,  (2.6) 

(2 .5)  

(2.7) 

k . Q =  k . h  = 0. (2.8) 

- i w i  = i(h,. n k) Q - hk", 

Such waves degenerate to pure inertial waves in the limit h, --f 0, and to damped 
Alfv6n waves in the limit S2 + 0. Equation (2.7) gives the important relation 

h,.k h = - -  
w + ihk2 a, 

between ^h and Q; and (2.6) then gives 

i d + 2 8 A f i  = -ikf, 
CT = - w + (h, . k)2 (0 + iAk2)-1. where 

(2.10) 

(2.11) 
45-2 
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From (2.10) using k . G  = 0, we have 

i ~ k r \ G - 2 ( k . Q ) i i  = 0, 
and, crossing again with k, 

so that, eliminating G ,  

and, correspondingly, 

i ~ k ~ G + 2 ( k . Q ) k ~ G  = 0, 

v = f Z(k.Q)/k,  

Q = ikAfi  = &kG, 

where Q is the vorticity Fourier component corresponding to G. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The situation when h, + 0 

When h, = 0, B = - w ,  so that from (2.14), 

w = T 2(k.S2)/k = T ~ Q c o s ~ ,  (2.16) 

where 0 is the angle between S2 and k. This is the well-known dispersion relation 
for pure inertial waves (Greenspan 1968). The phase velocity is wk/k2, and the 
group velocity is 

(2.17) 

where Q, is the component of S2 perpendicular to k (figure l ( a ) ) .  Hence, if 
k . Q  > 0, the upper and lower signs correspond to propagation ‘downwards’ 
and (upwards’ relative to the direction of 51. 

2 
k3 

cg. = V ~ W  = 7 - (Qk2 - (Q . k) Ic) = T 2QJk, 

(4 (6) 
FIGURE 1. ( a )  The phase velocity c = 2(k.S2) k/k3, and thegroupvelocityc, = 2 k ~  (Q A k ) / p  
for inertial waves with energy flux in the positive z-direction. ( b )  The velocity field in a 
single inertial wave (with or without magnetic field). 

A random superposition of such waves will exhibit a lack of reflexional sym- 
metry only if there is a net energy flux upwards or downwards, i.e. only if there 
are more of the upward propagating waves than the downward (or vice-versa). 
Such a situation could arise, for example, if the waves were generated in the half 
space z > 0 by random mechanical excitation on the plane z = 0; in this case, 
only the upward propagating waves would be present. We shall assume that only 
such waves are present in what follows. 
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The velocity field in a typical upward propagating wave is indicated in figure 
1 ( b ) .  The streamlines are straight, and their direction rotates clockwise in the 
direction of the wave-vector k .  The particle paths are circles in planes perpen- 
dicular to k. 

A measure of the lack of reflexional symmetry in a single wave is provided by 
thehek4yu.w = u . ( V ~ u ) . F r o m ( 2 . 1 5 ) ,  

__ 
U . O  = g 9 i l . Q  = &$klQ12, (2.18) 

so that the helicity of upward propagating waves is negative. A random super- 
position of upward propagating waves gives a velocity field. 

u(x, t )  = 92 il(k)exp{i(k.x-w(k)t)}d3k7 (2.19) s 
wherein we may suppose k .S2 > 0, and where, in the limit h, -+ 0,  

w(k) = 2(k.G2)/k = 2 s 1 ~ 0 ~ 0 .  (2.20) 

The spectrum tensor of this velocity field is 

Qij(k) = lim Q:(k)Qj(k)d3k. 
dak-0 

I f  the a,mplitudes of the waves are isotropically distributed, this must take the 
form 

where 

is the energy spectrum function, and 

E(k) = nk2@,i.(k) = nk2 lim )B(k)l2d3k 
dak+O 

(2.22) 

(2.23) 

__ 
F(k) = - 27rk2eii,cikk@ij(k) = 2rk2 lim &:Qid3k (2.24) 

a3k-0 

is the helicity spectrum function. The assumption that there are only upward 
propagating waves means that 

so that 

ik A Q = Q(k) = - Ki(k), 

F(k)  = -2kE(k). 

The velocity scale u,, and length scale 1 characteristic of the wave field may now 
be deJined by 

and U . W  = F(k)dk = - 2  IcE(k)dk = -u$. 
- J O m  

(2.27) 

(2.28) 

t When the overbar appears in such an expression, it must be interpreted as an en- 

$ More generally, if a mixture of upward and downward propagating waves were con- 
semble average, which is identical with tho space average for homogeneous turbulence. 

sidered, a relation of the form 

where la(k)l < 1, would hold. 
~ ( k )  = 2a(k) q k ) ,  
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grounds 

and (2.27) and (2.28) then become 

If u, and 1 are the only scales characterizing the field, then on dimensiona1 

E(k)  = iu;If(kz), (2.29) 

(2.30) 

A particular form of f(v), satisfying these constraints, that will be used by way of 
illustration in what follows, is 

f(r) = w/- 1)) (2 .31)t  

corresponding to a sea of waves, randomly oriented, but all having the same wave- 
length 27r1. 

Dynamic influence of the magnetic field 

When h, + 0, (2.11) and (2.14) (lower sign) give 

(2.32) 

The condition u, < QZ, or equivalently u,k < Q for all k giving significant con- 
tributions to the integral (2.27), and the gross energy constraint (from (1.5)), 

lhol < a09 

together imply that jh,.kl < !2. 

(2.33) 

(2.34) 

Hence (2.29) implies that, except possibly when 8 z in, the magnetic field causes 
a small modification in w: 

(h,. kI2 
2!2 cos 0 + ihk2' 

w z 2 ! 2 C O S 8 +  (2.35) 

and it is evident that this approximation is valid provided 

[h,. kl < (4!22~os28+h2k4)3. (2.36) 

We shall use (2.35) in what follows, and investigate the limits of its validity in 

It is evident from (2.35) that when h,. k 4 0, w becomes complex, implying a 
damping of the waves; indeed if w = w, + iw,, then the lowest approximation for 

§ 5. 

(2.37) 

Note that waves for which h,. k = 0 are not damped; such waves show no ten- 
dency to  bend the magnetic lines of force, and they therefore cannot feel the 
effect of ohmic dissipation. 

7 = 0, might be 
t A more realistic form, satisfying (2.30) and the necessary kinematic constraint near 

f(7) = C74e-571, G = 55/4!, 

but there seems little point in complicating the analysis in this paper by the use of such a 
function. 
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3. The expression for uTh 
We are now in a position to calculate 

K h  = $2 0 A h*Lcd3k. (3.1) 

a r \ i i * = -  Q A a*, (3.2) 

fi A Q* = -fi Ic A (k  A a*) = lQl2e2wit.  (3.3) 

s- 
Using (2.9) we have 

h,.k 
w* - ihk2 

and, using (2.25) and k.fi(k) = 0,  

i ik 

Hence (3.4) 

Under the condition (2.36) for all relevant k, we therefore have 

If the spectrum function E ( k )  has the form (2.29), withf(7) given by (2.31), then 
putting 

(3.6) becomes 
k = k(sin 0 cos C$, sin 0 sin 4, cos 0) = k&, (3.7) 

Evidently, A,  is a real symmetric tensor, depending on the parameters Q and 
h!jt/h, and on the orientation of the vector h, relative to 8. We shall first consider 
(in $4) the form of A,  when h, is so weak that the exponential factor in the inte- 
grand is effectively unity; and we shall show that in these circumstances dynamo 
action occurs for all values of the parameter Q .  This means that h, grows expo- 
nentially so that at  some stage the exponential factor in the integrand becomes 
important in restricting the growth of h, . This effect will be examined in detail 
in $5.  

4. Dynamo action during the stage of negligible Lorentz forces 
Neglect of the Lorentz force is equivalent to taking the limit h, + 0 in (3.8), 

i.e. to omitting the exponential factor. The #-integration is then trivial and we 

(4.1) 
have 

A,, = %l[ao(Q) sij + (YO(&) -a,(&)) Qi fij/Q21, 

(4.3) 
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These functions are sketched in figure 2. Note that 

a,(O) = yo(0) = 6 ,  

a&&) ’ Yo(&). 

and that, as Q -+ 00, a,(&) N n-/2&, yo(&) N l/8Q2. 
Also, for all Q > 0, 

Q 
FIGURE 2. The functions a,,(&) and yo(&) defined in (4.2), (4.3). 

In the limit Q -+ 0, A ,  becomes isotropic: 

Aij = @$l&ij, (4.7) 

and this limit corresponds to the situation considered in I. For Q $: 0 however, 
A,  is anisotropic (though still axisymmetric about the direction of 8) even if the 
amplitudes of the inertial waves are isotropically distributed; this arises of course 
as a direct result of the anisotropy of the dispersion relation (2.16). 

From (3.5) and (4.1) we now have 
__ 
u A h = A-l [a,h, + (7, - a,) (Q . h,) Q/Q21, (4.8) 

where a1 = uila,, y1 = uiZy,, and so equation (1.9) becomes 

an equation linear in h,, with constant coefficients. This equation admits ‘wave- 
type ’ solutions of the form 

h, = 92(hoeZE*Xemt), K.h,  = 0, (4.10) 

where (cf. I, § 6) 
m = - hK2 -t- h-l(a,y,(K~ + K i )  + a:KE}t. (4.11) 

The upper sign corresponds to an exponentially growing magnetic mode whenever 

a,y1(K2,+K;)+aa2,Kg > h4K4, (4.12) 

and there are certainlywave-vectors K for which this inequality holds (figure 3 (a)).  
It may be noticed in passing that the same separation of wave-number 

space into a region of amplification and a region of decay occurs in dynamo 
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models in which the velocity field is a simple periodic function of the space 
variables (Roberts 1969; Childress 1969). 

Of particular interest is the mode having maximum growth rate, since it is the 
one which will dominate in a magnetic field which has been amplified from an 
infinitesimal level. Since y1 < al, the maximum value of m, for given IKI (taking 
the upper sign in (4.11)) occurs for 

K = (0, 0, K ) ,  so that h, = (iol, iO2, 0) (4.13) 

and then m = - hK2 + a1 KIA. (4.14) 

Clearly m > 0, indicating dynamo action, if K < a,/h2. Substitution of (4.13) 
and (4.14) in (4.9) gives 

and so (4.10) becomes 
Loz = ih,,, 

h, = h,,(cos K(z  - z,), - sin K(z - z,), 0) emt (4.15) 

for some x,. This is a 'force-free' magnetic field (Roberts 1967) with straight lines 
of force, whose direction rotates (anticlockwise) with increasing z (figure 3 ( b ) ) .  

FIGURE 3. (a )  The surface alyl(K2 + Ki)  + a:K: = h4K4 in K-space separating the region of 
amplification of magnetic modes proportional to exp (iK .x) from the region of decay. 
( b )  The magnetic mode of maximum growth rate, given by (4.15). 

For a magnetic field that has grown from an infinitesimal level, the mode for 
which m has a maximum value will dominate long before the Lorentz force 
becomes significant. From (4.14), the maximum value m, of m occurs a t  K = Kc 

K,  = a1/2h2, m, = m(K,) = a;/4h3. (4.16) where 

Por consistency, these values must satisfy 

K,l 4 1 and m0S1-l< 1; (4.17) 

the first of these ensures that the length scale of variation of the growing field, 
L = O(K;'), is large compared with the length scale of the background velocity 
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field, and the second ensure8 that the growth rate is slow relative to the time-scale 
of the velocity field, so that the treatment of 5s 2 and 3, in which h, is treated as 
locally uniform and steady, is legitimate. With a, = utZa,(Q), the conditions 
(4.17) become 

Rii2 9 &'ao(&) and Rii4 9 Q3(a0(Q))2. (4.18) 

When Q = O(1) or less, these conditions are both implied by the assumed in- 
equality (1.1). If Q 9 1, however, thefirst inequalityof (4.18), with a,(&) - 77/2&, 
becomes 

Rii2 9 Q 9 1, (4.19) 

a somewhat stronger condition than (1.1). If Q 9 Rii2 9 1, there may still be 
dynamo action, but the 'double-length-scale' analysis of this paper would not 
then appear to be legitimate. 

5. The effect of the Lorentz force 
The exponential growth of the magnetic field described in § 4 cannot continue 

indefinitely; no matter how weak the initial field may be, at  some stage the 
back-reaction of the Lorentz force on the fluid motion must be taken into account. 
We shall suppose that there has been sufficient time for the emergence of a 
dominant mode of the form (4.13), (4.15). The field h, defined by (4.15) has the 
property that ht is independent of position, and this means that the principal 
values of the tensor Aij  defined by (3.6) or (3.8) remain independent of x even 
when the influence of h, is included. The principal axes of Aij  (with ho.Q = 0) 
are in the directions Q, h, and S2 A h,, and Aii now has the form 

where a, p and y will now depend on the parameter s(t) = hit/h as well as on Q .  
From (3.5), we then have 

so that it will be sufficient to calculate a. 

~ 

u A h = uiZ(a/h) h,, 

Choosing axes so that, locally, 

and with k given by (3.7), we have 

A,, 1 11 sin30cos2q5 
ugl 477 1+4Q2cos26' 

- 2s sin2 6' cos2 q5 
1 + 4Q2 cos2 6' 

a(&,&) = __ = - 

The asymptotic forms of this function for Q -+ 0 and Q -+ co are obtained in 
the appendix. Note that 

a(&, 0) = a,(&). (5 .5 )  

Substitution of (5.2) in (1.9) gives 

ah, u;za 
at - = V A h,+hV2ho, 
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and we now take account of the dependence of a on hi. The growing mode, selected 
on the linear analysis of $4, satisfies 

V A h, = K,h,, V2h, = -K2,h0, (5.7) 

and since a is independent of x (though dependent on t ) ,  this behaviour persists 
for all t ,  if only this single magnetic mode of maximum growth rate is considered. 
Hence (5.6) becomes 

(5.8) 
ah, ugZaK, 
at h 
_ -  _-  h, - AKE h,, 

or, in terms of the magnetic energy density 

where now S = 2trn(t)/h. 

For small t ,  S < 1, a z a,(&), and M increases exponentially as described in 
$4. As t increases, S therefore increases, and so from (5.4), a(&,S) decreases. 
However, a cannot decrease permanently below the level *a,(&), because if it 
did, equation (5.10) would imply an exponential decrease of M and so a decrease 
of 8 and so an immediate increase of a. Hence for t --f cx), we must have 

S -+ Xo(Q) 

a(&, So) = &ao(Q), 
where So(&) is determined by 

(5.11) 

(5.12) 

and is O( 1) for all Q (see appendix). 
The maximum value of M ( t )  attained before the ultimate decay 

M ( t )  - gAs,(Q)t-’ (5.13) 

sets in, may now be estimated. For values oft  such that 8(t) < 1, 

M ( t )  = M,e~p{~A-~(a~(&))~t} ,  a1 = uiZa,, (5.14) 

where M, is the initial energy density in the mode of maximum growth rate 
(assumedsmall). Thefunctions (5.13)and(5.14) have the same order of magnitude 

Ml = %SO(&) (5.15) 
1 

A 3  So(&) (ai(Q))2 t -- - (a1(Q))210g 2A”0 ’ at a time of order (5.16) 

and the maximum value attained by the magnetic energy density is therefore 
of order &Il(&). For Q < 1, the function (5.15) has the behaviour 

MI RLu& (5.17)t 
while for Q 1, it has the behaviour 

Nl A &-2 R U$ = R;uE. (5.18) 

t The symbol A is used to cienote an asymptotic dependence with constants of order unity 
omitted. 
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I n  both limits, MI < ui, so that the magnetic field does not in fact acquire 
more than a small fraction of the initially available kinetic energy of the motion. 
The rate of dissipation of kinetic energy via the Lorentz force to the ohmic sink 
is an order of magnitude greater than the rate of conversion of kinetic energy to 
magnetic energy. In this sense, the form of dynamo action considered is grossly 
inefficient, but even an inefficient dynamo is of course more significant than no 
dynamo a t  all. 

0 -mJ- t 

FIGURE 4. A sketch of the development of the magnetic energy density M ( t )  in the mode of 
maximum initial growth rate. During state I, t < t , ,  Lorentz forces are negligible; during 
stage I1 t 3 t,,  the magnetic energy decays because the velocity field which feeds it decays 
through ohmic dissipation. 

We may now check on the vaIidity of the condition (2.36), which will be satis- 

p o l  < hk fied for all k provided 

for all t ,  or equivalently provided 
(5.19) 

MI < h21t2 = R-2 m UO. (5.20) 

When Q < 1 (so that R,, < l), this is certainly satisfied by virtue of (5.19). 
When Q > 1, from (5.18), it requires that 

R i 2  & RL = Q2R& i.e. R,' & Q2,  (5.21) 

consistent with the requirement (4.19). It should be noted that when Q 1, 
it is those inertial waves for which 8 M &r, cos 0 M 0, which contribute most to the 
principal values of Aij, so that the conditions (5.19) and (2.36) are virtually the 
same for those Fourier components of the velocity field which are of most crucial 
importance in the analysis. 

6. Discussion 
The analysis of the foregoing sections shows that a random superposition of 

inertial waves in a rotating fluid is certainly capable of transferring energy to an 
initially weak magnetic field, and it describes one mechanism by which this trans- 
fer may ultimately be limited by the intervention of Lorentz forces. The model 
however, suffers from the defect that  it cannot predict the development of a 
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steady state in which transfer of energy to the magnetic field is exactly balanced 
by ohmic dissipation. This is because no sources of energy are present in the 
model, and the presence of dissipation implies that ultimately the sum of kinetic 
and magnetic energies decreases to zero. In this sense, the model of this paper 
bears the same relation to the observed phenomenon of steady (or at  least quasi- 
steady) geophysical and astrophysical dynamos as the theory of decaying homo- 
geneous turbulence bears to the observed phenomenon of statistically steady 
shear flow turbulence: the results are suggestive and intrinsically interesting but 
are otherwise not of great value. 

There are two ways in which the model may be modified so that a steady 
dynamomayresult, but both modifications lead to major difficulties. The first, and 
simplest expedient, would be to introduce a random body force distribution 
f(x, t )  on the right-hand side of (2.1); but then in order to have a turbulent field 
of finite energy in the limit h, --f 0, we have to include viscous dissipation also. 
A further difficulty is that the velocity field and so the properties of the 
growing magnetic field will be determined by the statistical properties of the 
assumed field f(x, t ) ;  and unless some information is available concerning this, 
the labour involved in carrying out the calculation is hardly justified. 

The second, and more realistic, way to supply energy to the fluid is to do so 
through the fluid boundaries, either by thermal or by mechanical means. (In 
the case of the fluid in the earth’s core, both mechanisms are probably present. 
Thermal convection has long been considered an important mechanism in 
driving the irregular core motions that are inferred from, for example, secular 
variations of the surface magnetic field. Mechanical excitation can arise through 
relative motion of the core fluid and irregularities on the inner boundary of the 
mantle; and a recent analysis of the correlation between magnetic and gravita- 
tional perturbations on the surface of the earth (Hide & Malin 1970) suggests 
strongly that this also is an important mechanism.) A statistically steady state 
is then certainly conceivable, but unfortunately the idealization of spatial 
homogeneity must be abandoned, since the wave energy of the background 
turbulence must necessarily attenuate in the direction of energy propagation. 

The mechanism of control of the growth of magnetic energy is (in this paper) 
very simple: where the growth is most rapid, the dissipation of the velocity 
field (which feeds the growing magnetic field) is likewise most rapid, and so 
the growth weakens. In the case of a steady dynamo, with a mechanical source 
of energy, as envisaged in the two preceding paragraphs, the control mechanism 
would be more subtle. The vital term V A u A h in (1.9) arises essentially because 
u and hare out of phase; but as h, grows in strength, the phase difference between 
u and h decreases (for a non-dissipative Alfvh wave, it vanishes altogether), 
and so V A u A h will decrease until some kind of balance with thedissipativeterm 
hV2h, of (1.9) is possible. The ultimate level of magnetic energy attained in these 
circumstances may well be very much larger than the maximum levelN,attained 
under the conditions of $ 5  of this paper. 

- 

~ 
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Appendix 

function defined in (5.4), viz. 
We have to obtain the asymptotic behaviour for small and large Q of the 

(i) Q < 1 
In this limit, explicit dependence on Q disappears, and the integral may be most 
conveniently simplified by using polar angles 8', #' measured from h,; the half- 
space G' < &T becomes the half-space 0 < #' < n-, and ( A l )  becomes 

a(&, 8) N a(0, AS) = - /0nc0s2 0' e-25 0082 sin 8' do' 

(ii) Q 9 1 

For general Q, the #-integration in (A 1)  may be carried out in terms of the associ- 
ated Bessel function I,(q) (Gradshteyn & Rijzhik 1965, 53.388): 

where 

For Q % 1, the dominant contribution comes from the neighbourhood of p = 0, 
and here 

S 2Qp N (#/a- I)#. 
1 + 4Q2p2' 

Changing the variable of integration in (A3) from p to x = q/S, we have, for 
Q + 00, 

a N g(4/32Q, (A61 

where 

The functions defined by (A2) and (A7) are monotonic decreasing functions 
of S (as is clearly the general expression ( A l ) ) .  The function So(&) defined by 
(5.12) is clearly O(1) as Q -+ 0 and as Q + 00; and since a(&, 8) decreases more 
rapidly with S when Q is large than when Q is small (the integral (A 1 )  being then 
dominated by contributions from the neighbourhood of 8 = in-), S,(Q) is also 
monotonic decreasing, and O(1) for all Q .  
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